960 research outputs found

    Deeply-Virtual Compton Scattering on Deuterium and Neon at HERMES

    Full text link
    We report the first observation of azimuthal beam-spin asymmetries in hard electroproduction of real photons off nuclei. Attributed to the interference between the Bethe-Heitler process and the deeply-virtual Compton scattering process, the asymmetry gives access to the latter at the amplitude level. This process appears to be the theoretically cleanest way to access generalized parton distributions. The data presented here have been accumulated by the HERMES experiment at DESY, scattering the HERA 27.6 GeV positron beam off deuterium and neon gas targets.Comment: 5 pages, 6 figures. Talk given by F. Ellinghaus at the "15th International Spin Physics Symposium", SPIN 2002, September 9-14, 2002, BNL, Upton, NY, USA. To be published in the proceeding

    Stability of strained heteroepitaxial systems in (1+1) dimensions

    Full text link
    We present a simple analytical model for the determination of the stable phases of strained heteroepitaxial systems in (1+1) dimensions. In order for this model to be consistent with a subsequent dynamic treatment, all expressions are adjusted to an atomistic Lennard-Jones system. Good agreement is obtained when the total energy is assumed to consist of two contributions: the surface energy and the elastic energy. As a result, we determine the stable phases as a function of the main ``control parameters'' (binding energies, coverage and lattice mismatch). We find that there exists no set of parameters leading to an array of islands as a stable configuration. We however show that a slight modification of the model can lead to the formation of stable arrays of islands.Comment: 11 pages, 14 figures, submitted to Physical Review

    On the efficient numerical solution of lattice systems with low-order couplings

    Full text link
    We apply the Quasi Monte Carlo (QMC) and recursive numerical integration methods to evaluate the Euclidean, discretized time path-integral for the quantum mechanical anharmonic oscillator and a topological quantum mechanical rotor model. For the anharmonic oscillator both methods outperform standard Markov Chain Monte Carlo methods and show a significantly improved error scaling. For the quantum mechanical rotor we could, however, not find a successful way employing QMC. On the other hand, the recursive numerical integration method works extremely well for this model and shows an at least exponentially fast error scaling

    Systematically extending classical nucleation theory

    Full text link
    The foundation for any discussion of first-order phse transitions is Classical Nucleation Theory(CNT). CNT, developed in the first half of the twentieth century, is based on a number of heuristically plausible assumtptions and the majority of theoretical work on nucleation is devoted to refining or extending these ideas. Ideally, one would like to derive CNT from a more fundamental description of nucleation so that its extension, development and refinement could be developed systematically. In this paper, such a development is described based on a previously established (Lutsko, JCP 136:034509, 2012 ) connection between Classical Nucleation Theory and fluctuating hydrodynamics. Here, this connection is described without the need for artificial assumtions such as spherical symmetry. The results are illustrated by application to CNT with moving clusters (a long-standing problem in the literature) and the constructrion of CNT for ellipsoidal clusters

    Deeply Virtual Compton Scattering at HERA

    Get PDF
    Deeply virtual Compton scattering has recently been studied by three HERA experiments, H1, ZEUS and HERMES, covering a broad range of kinematic regimes. We present cross section measurements of the two collider experiments in the kinematic region 2<Q^2<100 GeV^2 and 30<W<140 GeV, and compare them to QCD-based calculations. HERMES measurements of azimuthal asymmetries and their kinematical dependences are presented for Q^2>1 GeV^2 and 2<W<7 GeV.Comment: 4 pages, 8 figures, submitted to ICHEP 2002 proceedings; citations replace

    Absence of non-trivial asymptotic scaling in the Kashchiev model of polynuclear growth

    Full text link
    In this brief comment we show that, contrary to previous claims [Bartelt M C and Evans J W 1993 {\it J.\ Phys.\ A} 26{\bf 26} 2743], the asymptotic behaviour of the Kashchiev model of polynuclear growth is trivial in all spatial dimensions, and therefore lies outside the Kardar-Parisi-Zhang universality class.Comment: 3 pages, 4 postscript figures, uses eps

    Mise en ligne d'un microscope digitalisé et télécommandé

    No full text
    On décrit la mise en ligne avec un calculateur d'un microscope digitalisé en x, y, z, et télécommandé, pour les mesures dans l'émulsion ionographique

    The Pion Charge Form Factor via Pion Electroproduction on the Proton

    Get PDF
    Middelkoop, G. van [Promotor]Blok, H.P. [Copromotor]Mack, D.J. [Copromotor

    Nucleation Rates of Water and Heavy Water using Equations of State

    Get PDF
    The original formula of Gibbs for the reversible work of critical nucleus formation is evaluated in three approximate ways for ordinary and heavy water. The least approximate way employs an equation of state to evaluate the pressure difference between the new and old phases. This form of the theory yields a temperature dependence for the nucleation rate close to that observed experimentally. This is a substantial improvement over the most commonly used (and most approximate) form of classical theory.©2004 American Institute of Physics

    Improving the initial guess for the Newton-Raphson protocol in time-dependent simulations

    Full text link
    A general linearisation procedure for the consistent tangent of a small-strain visco-plastic material model is presented in this note. The procedure is based on multi-variable linearisation around a so-called 'reference state'. In particular, the linerarisation of the time integration scheme is found to yield an extra term compared to classical expressions, which only appears because the material response is time-dependent. It has the effect of yielding a very accurate initial guess for the Newton-Raphson protocol based on the ongoing viscous flow. It is shown, using a modern variational FFT-based solver, that the extra term reduces both the CPU time and the number of Newton-Raphson iterations by around a factor two.Comment: Journal of Computational Physics, 202
    • …
    corecore